Antitoxin MqsA Helps Mediate the Bacterial General Stress Response
نویسندگان
چکیده
Although it is well recognized that bacteria respond to environmental stress through global networks, the mechanism by which stress is relayed to the interior of the cell is poorly understood. Here we show that enigmatic toxin-antitoxin systems are vital in mediating the environmental stress response. Specifically, the antitoxin MqsA represses rpoS, which encodes the master regulator of stress. Repression of rpoS by MqsA reduces the concentration of the internal messenger 3,5-cyclic diguanylic acid, leading to increased motility and decreased biofilm formation. Furthermore, the repression of rpoS by MqsA decreases oxidative stress resistance via catalase activity. Upon oxidative stress, MqsA is rapidly degraded by Lon protease, resulting in induction of rpoS. Hence, we show that external stress alters gene regulation controlled by toxin-antitoxin systems, such that the degradation of antitoxins during stress leads to a switch from the planktonic state (high motility) to the biofilm state (low motility).
منابع مشابه
Antitoxin DinJ influences the general stress response through transcript stabilizer CspE.
Antitoxins are becoming recognized as proteins that regulate more than their own synthesis; for example, we found previously that antitoxin MqsA of the Escherichia coli toxin/antitoxin (TA) pair MqsR/MqsA directly represses the gene encoding the stationary-phase sigma factor RpoS. Here, we investigated the physiological role of antitoxin DinJ of the YafQ/DinJ TA pair and found DinJ also affects...
متن کاملThree Dimensional Structure of the MqsR:MqsA Complex: A Novel TA Pair Comprised of a Toxin Homologous to RelE and an Antitoxin with Unique Properties
One mechanism by which bacteria survive environmental stress is through the formation of bacterial persisters, a sub-population of genetically identical quiescent cells that exhibit multidrug tolerance and are highly enriched in bacterial toxins. Recently, the Escherichia coli gene mqsR (b3022) was identified as the gene most highly upregulated in persisters. Here, we report multiple individual...
متن کاملAntitoxin MqsA Represses Curli Formation Through the Master Biofilm Regulator CsgD
MqsA, the antitoxin of the MqsR/MqsA toxin/antitoxin (TA) system, is a global regulator that reduces expression of several stress response genes (e.g., mqsRA, cspD, and rpoS) by binding to the promoter palindromic motif [5'-AACCT (N)₃ AGGTT-3']. We identified a similar mqsRA-like palindrome [5'-AACCT TA AGGTT-3'] 78 bp upstream of the transcription initiation site in the csgD promoter (p-csgD)....
متن کاملMqsR/MqsA Toxin/Antitoxin System Regulates Persistence and Biofilm Formation in Pseudomonas putida KT2440
Bacterial toxin/antitoxin (TA) systems have received increasing attention due to their prevalence, diverse structures, and important physiological functions. In this study, we identified and characterized a type II TA system in a soil bacterium Pseudomonas putida KT2440. This TA system belongs to the MqsR/MqsA family. We found that PP_4205 (MqsR) greatly inhibits cell growth in P. putida KT2440...
متن کاملThe MqsR/MqsA toxin/antitoxin system protects Escherichia coli during bile acid stress.
Toxin/antitoxin (TA) systems are ubiquitous within bacterial genomes, and the mechanisms of many TA systems are well characterized. As such, several roles for TA systems have been proposed, such as phage inhibition, gene regulation and persister cell formation. However, the significance of these roles is nebulous due to the subtle influence from individual TA systems. For example, a single TA s...
متن کامل